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Presentation sequence

This presentation is divided into 5 parts.
Some portions of the presentation can be
skipped In the interest of time

1. Learning about your prospect

2. Hydraulic fracture stimulation, microseismic
events and the local fracture network

3. 3D seismic and microseismic interpretation

4. Estimating the stimulated reservoir volume

5. Reservoir fracture model development




Subtopics are referenced In the
following slides

|. Locations of examples illustrated in the presentation

1. 7 [II. Some pitfalls in developing a deeper unconventional play

lll. Subsurface characterization

I\VV. Hydraulic fracture stimulation (HFS)

2. 1 V. Fracture rupture types produced by HFS

VI. Microseismic events produced during HFS

VIl. Estimating the subsurface fracture network from 3D seismic

3. VIlll.Interpreted microseismic event trends

IX. Microseismic event trend relationships to discontinuities
extracted from 3D seismic

X. The stimulated reservoir volume from dots in the box to

M

I

|

4.4 . :
energy weighted estimates
5 { XI. Generating a discrete fracture network resulting from HFS
' XIl.Modeling stimulation of the ambient natural fracture network
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|. Hamilton Group distribution
Appalachian Basin
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Marcellus thickness map- we’ll look at

some data from a couple areas

B L




An example Marcellus play Greene
Co. PA — Stratigraphic context
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Il. Some potential pitfalls
How well do you know your play?

Y Ray Structure Map of Upper Devonian
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Initial wells drilled into the Marcellus reveal
deeper structure is more complex

Structure Map of Upper Devonian Structure Map after Nine Initial

First Bradford Sandstone Marcellus Vertical Wells v Ky
' 8 Well 3
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The slow evolution of a structural view of the reservoir unfolds
It's time for 3D seismic

Structure Map after Nine Initial Structure Map after First Five
Marcellus Vertical Wells Marcellus Horizontal Wells

— Sullivan (2013)
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3D seismic reveals complex
detached structures

Location of Seismic Line
In Structure Map

In-Line Seismic Section

Sullivan (2013)
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3D seismic reveals subtle structure
and helps optimize well placement

Post-Seismic Structure Map and
Horizontal Wells

Sullivan (2013)
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. Subsurface characterization
3D seismic view
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Disharmony between deep and shallow
structure revealed Iin 3D seismic
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Interpreted 3D seismic structure on the
Onondaga Ls./base of Marcellus
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W,

We will look at microseismic data

from this group of wells
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Multiple wells from a single pad to minimize environmental
Impact while maximizing reservoir contact
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V. Hydraulic fracture stimulation
(HFS)

Perforation gun




Fluid and proppant injection under high pressure creates a
network of fractures in your reservoir

Tensile
fractures

Hydraulic
fractures

Shear
fractures

Local
natural
fracture
network

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil
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The initial segment or stage Is Isolated using
a plug and the next stage Is fracked

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil
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The process Is repeated for numerous
stages along the length of the lateral

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil




V. Microseismic events produced during HFS
The main hydraulic fracture is a tensile fracture.

& The hydraulic fracture
3
© develops slowly over
‘/ the two to three hour

stimulation period and
/ _Hydraulic fracture  is generally quiet or
A tensile fracture aseismic during its
development.

Opens in the
direction of S, ;i

S
o
%

Yy,
@x\“\ @//
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Old faults and fractures in the Earth’s stress field and the influence of increased
pore pressure through hydraulic fracture stimulation

Ty
T=3S,+ Uo,

Where S, is relatively small
and assumed ~0 so that

S, —
63 c51 Gn

While these old faults and fractures are stable in the Earth’s present-day stress
field, they often fail during HFS in response to pore pressure increase. Recall
that 6=S-P,, so if the pore pressure Is increased through hydraulic fracture
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Old faults and fractures in the Earth’s stress field and the influence of increased
pore pressure through hydraulic fracture stimulation

Ty
T=3S,+ Uo,

Where S, is relatively small
and assumed ~0 so that

The near zero S, assumes
the fractures are critically
stressed or near failure to g
begin with 0
g O3

—
OF] G,

The increase in pore pressure associated with hydraulic fracture
stimulation can lead to rupture on previously existing faults and fractures

optimally oriented with respect to S, for failure to occur.

W,
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Essential data: natural fracture orientations, orientations and
magnitudes of principal stresses and pore pressure

Map view — looking
down from above
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v The WVU Energy Institute | energy.wvu.edu



The hydraulic fracture




VI. Detected microseismic events
associated predominantly with shear failure
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Microseismic events well 1 colored by stage
Treatment proceeds from toe to heel
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Treatments can be conducted well-by-well or back and
forth between wells in what is called a zipper frac
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The zipper frac can help pre-stress the rock and make it
easier for stages in adjacent wells to open fractures

 — -

[ - - - - . - . * - X 3 -~ -
4

https://www.youtube.com/watch?v=2LgmleH86 s Microseismic Inc
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Geophone sensor locations

Listening

/ We” —-2.45
—-2.35
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Events from three wells

Listening

Mom_|

-

e

\ Bl

Ls. Surface

Magnitude varies from about -2.5 to -1.4
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Magnitude and energy In practical
terms (taken from IHS webinar)

Magnitude -2.25 corresponds to energy released in
dropping a gallon jug of milk from waist height

Moment Magnitude Energy Release (kJ) Energy Equivalent l
-4 0.00006241 key presson keyboard
35 0.00035138
-3 0.00197829 dropping an apple 6 ft
-2.5 0.01113778 air gun/bb gun Microseismic Range .
-2 0.06270569 powerful sling shot 5to0-4
-15 0.35303305 Firecracker
-1 198757607 home-run hit
0.5 11.19005329 .50 caliber rifle
0 63.00000000 1Sgrams of TNT
0.5 355.00000000 35 mph car crash
1 1998.65000000 stick of dynamite
1.5  11252.39950000 WWII conventional bomb
2 63351.00918500 Quarry Blast
25 356666.18171155 lightning balt
3 2008030.60303603 15 gallons of gasoline
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Events are largely confined
between frac barriers
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VIl. Unvelling subsurface faults and fracture zones

W,

In 3D seismic using post-stack processing
W | Inline 192 E

6000 ~ N
?.Oﬂy?_a Mahantango %~
40_3 ully Ls. — : Top QL
Onondaga Ls. — +
Q 2000 Marcellus @
L Top 2
Salina Salt —
8000 2500

9000

0 1000 2000 3000 4000 5000 6000ftUS
[ — — '

]
B 0 500 1000 1500 2000m
. - T eeeee——

v The WVU Energy Institute | energy.wvu.edu



Time variant trace amplitude slice view
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Map view of extracted seismic discontinuity trends.
What do they tell us about the reservoir?
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e
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208000
000802

These discontinuities are
interpreted to be associated
with old faults and fracture
zones. These interpreted old
faults and fracture zones may
rupture in response to
hydraulic fracture stimulation
and enhance the stimulated
reservoir volume (SRV).
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In this area we see two prominent discontinuity trends
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VIII. Interpreted microseismic event trends
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Interpreted event trends
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IX. Comparing discontinuity and
microseismic event trends

Interpreted discontinuity trends Interpreted microseismic event trends
L_l.) =]

o

The similarity of microseismic event trends to seismic
discontinuity trends suggests seismic discontinuities are

reactivated small faults and fracture zones in response to HFS.

W,
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Using failure criterion we estimate
Interpreted trends most likely to fail.

Microseismic event trends ( Shmax=N84E)
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Evaluating the interpreted microseismic
erreted mirasesmic vt venss. hOUEIN L LT QIAEIS

' Trlénds lik I to-""?ail °
“’\._ ey ~N51°E

270

270

Microseismic event trends ( Shmax=N84E)

08l—

We use the “most likely to fail” trends
to define the natural fractures and
faults in our discrete fracture network
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Seismic discontinuity trends most likely to
-« accommodate failure
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X. The stimulated reservoir volume (SRV)

Information about the SRV comes in the form of the microseismicity
produced through HFS
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Dots In the box estimation

Orientation
Strike: |61.436 deg [~ Fix strike
Dip: IH'I]' deg

Outliers fitter

Filter method: I MNone

Dimension

Hafflength L1: [1551.18

L2:  [1631.301

Haf height H1: [225.897

H2: [743.353

Haff width ~ W1: |739.438

W2: |468.077

Volume: [3724722904 945
Center coordinates

3.7 hillion cubic feet

W,
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We can refine the “"SRV” box to

Crientation

Strike: |66.734 deg [~ Fix strike
Mom_iang ()
-2.61 Dip: |-81.866 deg
-2.458 Outlers fitter
-2.306 Fiter method: | 1one =k
—-2.154
—-2.002 Dimension
b
Haf length L1: [892.658 ft
—-1.698
L2 [1019.18 ft
—-1.546
Half height H1: |225.897 fi
—-1.394
12472 HZ: |T43.353 ft
l-mg Half width ~ W1: 276 463 ft
W2 |206.33 ft
R
” Volume: |894638207.876 ft3
> Center coordinates
> ~0.9 billion cubic feet

The WVU Energy Institute | energy.wvu.edu
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“Shrink wrapped” SRV estimate

L o cbe 2
—-1.394 a ?0/ :
l-1.242 S o
-1.09
“O > o 9 @
9 °

0.192 billion cubic feet or about 1/19% of the initial dots-in-the-box estimate.
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Using the shrink-wrap approach for the
entire well we get an SRV of ~1.9Bcf

1357000

1356000
o] _r_r_r-'—ﬂ"r_r_ L
[TTT e = u - e a.,rur""'r_-
6500 — 2 muu_‘l ZoE [Ai00 | 6500
.= Eel i
-axis| » . B ‘cﬁo b -axis
Eéi ¥ ,ﬂ—%%*'&g-r—i—- Z-axis
= o f <] &
— “‘&' t _dgff’ e J,ﬂtiﬁ_?‘!ﬁ‘}% o '?} “'d:‘uqz ':"a I 7000
& B o ! £~
SR S| | |
T356000 T35 7000 =
Y-axis Y-axis

The whole-well SRV estimated in this manner is about ¥
the SRV estimated for the single stage shown earlier
using the dots in the box approach
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The Energy Weighted SRV.
Energy is related directly to surface rupture area

log E ~1.5M +4.8
E = 63096 *10%M Rupture length (height)

oneevent thatevent

B
=

log A=1.05M —2.95
A =1122.02(101-°5M )

(78]
n

(7]
]

[l
Ln

[
=]

estimated length or height {m}

\I]Enelrgy ind . 10 metiz
oules an
area in m2 0

Characteristiclinear dimension of rupture surface
[ ]

-4 B -3 -2.5 -2 -1.5 -1 -0.5 0

Event Magnitude

Characteristic linear dimension ~ /fracture area
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Magnitude - fault plane area and
slip relationships

8
Major: can cause serious damage over large areas. A = g 1020
7 )
Strong: can be destructive in populated areas ’ o
Lo 1018
S Moderate: can cause damage to poorly constructed buildings "E\
e
'S O - e arges 16 =
() Noticeable shaking but damage is unlikely Guy, AR |10 =
o 4 aver '.E
S Minor: felt but does not cause damage 2 g 1 Of 4 (1))
O v 2 S
L3 ot S
b -
S M L, S
3 2 10
= o}
© -
© 1 10 ©
T 07 3
LPLD =
0 event T
108 ®©
-1 v
2|, . 106
’ P
P 4 P
- 100 107 102 108 10* 10

Fault Patch Size (m
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These cross plots are based on the total cloud of
microseismicity — not just the reservoir bound events
An energy weighted estimate of the SRV is related directly to

ruptured surface area and has a higher correlation to production
than the standard density weighted estimate
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Energy release per unit volume directly
related to total rupture surface area

1,200,000

=
P = 2.51E+09ED(OL) + 63703 e
R? = 0.917

1,000,000

800,000

600,000
P = 1.57E+09ED(NOL) + 72450
R?=0.989
400,000

MH5

2 year cumulative production (P) {(MCF)

200,000

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

Energy release per unit volume (Joules/m3)
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If we have a few wells in the area we should be able
to estimate long term production for additional wells

1,200,000

=
P = 2.51E+09ED(OL) + 63703 e
R? = 0.917

1,000,000

800,000

600,000
P = 1.57E+09ED(NOL) + 72450
R?=0.989
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2 year cumulative production (P) {(MCF)
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0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

Energy release per unit volume (Joules/m3)
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XI. Modeling the stimulated reservoir fracture network

» \We use radiated energy release as a direct measure of rupture area
created in response to HFS.

» \We create an energy weighted grid to control the distribution of
fractures in a model DFN used to represent the stimulated reservoir
volume.

» In the absence of image log data we define fracture sets using
microseismic event orientations most likely to accommodate failure.

» The energy weighted grid is scaled to represent fracture intensity

« Two grids are developed: one for each fracture set scaled in proportion
to their relative occurrence
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Energy weighted event density grid is used
to control fracture intensity distribution
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Model of the stimulated natural
fracture network




Upscale into porosity and
nermeability cubes
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XlIl. Recent reservoir modeling software developments
allow us to model stimulation of the natural fracture network

Northeast Natural Energy Site

Devonian Onondaga Ls. Surface
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Fracture orientations from the Quanta Geo
log used to create model DFN for stimulation
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Conclusions

« 3D seismic can help optimize development of your
unconventional play

« Understanding the local fracture network and orientation of
the maximum horizontal stress can help maximize stimulated
reservoir volume and cumulative production

* Energy density can be used as a predictor of longer term well
productivity

 [Information about the local fracture network can help you
develop accurate models of the stimulated reservoir fracture
system that may help design infill well placement
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